On the compactness of a nonlinear operator related to stream function-vorticity formulation for the Navier-Stokes equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H2 solutions for the stream function and vorticity formulation of the Navier-Stokes equations

We show that the two dimensional Navier–Stokes equations in the stream function and vorticity form with nonhomogeneous boundary conditions have a unique solution with a stream function having two space derivatives. 2005 Published by Elsevier Inc.

متن کامل

A Stabilized Finite Element Method for Stream Function Vorticity Formulation of Navier-stokes Equations

We the solvability of the two-dimensional stream function-vorticity formulation of the Navier-Stokes equations. We use the time discretization and the method of characteristics order one for solving a quasi-Stokes system that we discretize by a piecewise continuous finite element method. A stabilization technique is used to overcome the loss of optimal error estimate. Finally a parallel numeric...

متن کامل

An operator splitting scheme for the stream-function formulation of unsteady Navier-Stokes equations

A fictitious time is introduced into the unsteady equation of the stream function rendering it into a higher-order ultra-parabolic equation. The convergence with respect to the fictitious time (we call the latter ‘internal iterations’) allows one to obtain fully implicit nonlinear scheme in full time steps for the physical-time variable. For particular choice of the artificial time increment, t...

متن کامل

Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier–Stokes equations

Meshfree point collocation method is developed for the stream-vorticity formulation of two-dimensional incompressible Navier– Stokes equations. Particular emphasis is placed on the novel formulation of effective vorticity condition on no-slip boundaries. The moving least square approximation is employed to construct shape functions in conjunction with the framework of point collocation method. ...

متن کامل

Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation

The standard discretization of the Stokes and Navier-Stokes équations in vorticity and stream function formulation by affine finite éléments is known for its bad convergence. We present here a modified discretization, we prove that the convergence is improved and we establish a priori error estimâtes. Résumé. Il est bien connu que la discrétisation usuelle des équations de Stokes et de Navier-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JSIAM Letters

سال: 2017

ISSN: 1883-0609,1883-0617

DOI: 10.14495/jsiaml.9.77